2024/4/25

用户名: 密码:

预约热线:0371-63310633、86172899  

本站目前有:名网友关注!

您好!您现在的位置:首页 > 音乐治疗音乐治疗

大脑怎么听音乐(二)

会听音乐的大脑

■自从人类有文化以来,音乐就普遍存在于世上每个社会。我们似乎天生就喜爱音乐,两个月大的婴儿就会把头偏向播放愉悦音乐的一侧。

■脑子有许多处理音乐的区域,无论是知觉面,还是情绪面;脑子也会随经验调整功能组织,对重要的音乐讯息做出更强烈的反应。

■音乐为何那么动人音乐对我们有什么重要?研究脑子如何处理音乐的科学家,正在奠定我们回答这些问题的基础。

 

以神经影像技术做的研究,也让我们更细致地了解大脑对于音乐的反应。要是我们对耳朵的传声机制有些了解(见右页<大脑处理音乐的机制),更能掌握这些研究结果的意义。听觉系统与其他的感觉系统一样,也有个层级组织,由一串神经处理站组成,将声音从耳朵一直送到最高层的听觉皮质内耳的耳蜗是神经系统处理声音讯息(例如乐音)的起点。耳蜗接收到复杂的声音,例如小提琴的琴声,就会将其中的基础频率分析出来,然后将这些资讯送入一千神经。一千神经中有许多神经纤维,不同频率的声音刺激由不同的纤维传送。这些神经纤维的神经冲动最后会传入大脑颞叶的听觉皮质。大脑听觉系统的神经元,各有各的最宜反应频率,相邻神经元的反应曲线有重叠之处,因此不会有“漏接”的情事。由于听觉皮质上邻近的神经元有相近的最宜反应频率,于是我们能在听觉皮质表面找出一张频率分布图(见下方将脑子重新定调>)。



将脑子重新定调
每个听觉神经元都有反应偏好,对特定音频反应得特别热烈(a)所示。
要是动物学会某个特定乐音什么。重要的,神经元的反应模式就会变化(B)。
这种细胞调适能“编辑”大鼠大脑上的频率分布图,使皮质以较大的区域处理一个重要乐音。
例如,要是8千赫这个频率变得重要,负责这个频率的区域就会变大(C)。


不过,大脑对音乐的反应更复杂些。音乐包括一串乐音,知觉音乐,必须抓住声音之间的关系。大脑有许多区域分别处理音乐的不同要素。就拿乐音来说吧,它包括频率与响度两个要素。有一度学者怀疑,已经针对特定频率调出最宜反应模式的神经元,只要侦测到那个频率,就会以同样的方式反应,不会改变。

音乐的各面相由大脑不同部位处理,右颞叶偏重处理和声以及音色,左颞叶则处理较短的节奏刺激。

但是到了1980年代末,麦肯纳(托马斯·麦肯纳)在我的实验室(美国加州大学尔湾分校)与我一齐研究“轮廓”,我们开始质疑这个传统看法。所谓轮廓是指音高(音高)起伏的模式,那是所有旋律的基础。我们以五个乐音创作轮廓不同的旋律,然后观察猫听觉皮质上某个神经元的反应。我们发现,神经元的反应随旋律的轮廓而变化:神经元对特定乐音的反应,随那个乐音在旋律中的位置而变。同样的乐音,要是前面有其他乐音,神经元也许反应得特别热烈;如果它是第一个乐音,反应就颇为冷淡。还有,同样的乐音要是出现在上升轮廓中,神经元的反应与它出现在下降轮廓中或其他复杂轮廓中也不同。这些发现证明,旋律的组成模式大有关系:听觉系统处理声音的方式,与电话或音响系统不同。CL1只是单纯地传送声音罢了。大多数的研究以旋律为主,但是研究节奏(乐音的相对长度与间隔),和声(同时出现的乐音间的关系)以及音色(两个乐器演奏同一个乐音时的声音差异)都得到了有意思的结果。科学家研究节奏,发现两个大脑半球涉入的程度不同,至于哪个半球涉入较深,不同的研究团队得出不同的结论。因为不同的作业(甚至不同的节奏刺激)可能必须动用不同的处理模式。举例来说,左颞叶似乎处理的是比较短的刺激,因此让受试者收听比较短的音乐,要求他分辨节奏,就会发现他的左颞叶比较活跃。

在和声方面,情况就比较清晰。科学家让受试者专注于和声,以神经影像技术观察他们的大脑皮质,发现右颞叶的听觉区比较活跃。右颞叶也偏重处理音色。动过右颞叶切除手术的病人,会难以分辨音色,切除左颞叶的病人就不会。此外,正常人在分辨音色的时候,右颞叶就会活跃。

大脑的反应也与听者的经验与训练有关。即使一点点训练都能很快改变大脑的反应。举例来说,直到10年前,科学家还相信听觉皮质的每个神经元一旦“定音“,就不再变了。不过,我们研究轮廓的结果,使我们怀疑神经元即使“定音”之后,也许还能改变。也就是说,在学习过程中,有些神经元会对。CL1注意到而且记住的声音变得格外敏感。

为了证实这个想法,巴金(Jon S.Bakin),埃德林(Jean-Marc Edeline)与我在1990年年代做了一系列实验。我们想知道,要是受试者经过学习而知道某个乐音非常重要,听觉皮质的基本组织会不会变化?我们以天竺鼠做实验,先让。CL1一千许多不同的乐音,并记录听觉皮质不同神经元的反应,找出最能激发强烈反应的乐音。然后,我们选一个不会激发强烈反应的乐音,让它成为脚遭到轻微电击的前兆。只消几分钟,天竺鼠就学会了这个“乐音-电击”关联。接着,我们再度观察一千觉皮质神经元的反应─训练之后立即就做,隔些时候再做,直到训练后两个月为止。结果,神经元的“定音”改变了,前兆乐音才会引发热烈的反应,与原先的最宜频率不同。可见学习会令大脑重新定音,使更多神经元对必须采取行动的声音做出最宜反应。这个细胞调整的过程会向外延伸,“编辑”皮质的频率分布图,让更大的皮质区域处理重要的乐音。想知道哪些频率对动物很重要,只消找出它听觉皮质的频率组织就成了(见左页<将脑子重新定调>)。

重新定音的效果相当持久,毋需更多训练就会增强,几个月都不消褪。这些发现开创了一个研究方向,更多研究团队加入之后,发现大脑储存作者:习结果的方式之一,是投入更多神经元处理那个作者:得的刺激。我们不能以人做同样的实验,但是利用神经影像技术做研究,能在大脑皮质各个区域侦测到几千个神经元平均反应幅度的变化。英国旅店,假日旅游套餐,旅游指南等等的资讯大学神经心理学教授杜兰(雷刀郎)的团队,训练人类受试者从事类似的作业,让他们学会某个特定乐音是重要的。1998年年,他们发表报告指出,学习也能在人类大脑造成同样的定音变化。我们在嘈杂的房间里,很快就能辨认一个熟悉的旋律,罹患神经退化疾病的人,例如阿兹海默。心理学心理学_AT_患者,即使记忆丧失得厉害,仍然记得过去作者:过的音乐。这些现象也许都可以用“学习(重新定音)的长期效果“来解释。

即使我们没有听见声音,仍然可以回忆一首音乐,像是正在聆听似的。挑一首你知道的曲子,在脑袋里放出来,任何一首都成。这首音乐正在脑子的哪个地方播放?美国巴克内尔大学心理学教授郝普恩(安德烈R.哈尔彭)与加拿大马吉尔大学蒙特娄神经作者:研究所教授扎佗(罗伯特J. Zatorre)研究过这个问题。他们找来做实验的人都不是音乐家。在受试者聆听音乐或想像自己正在听同一首曲子的时候,以正子断层扫描仪观察他们大脑的活动,1999年,他们发表报告指出,颞叶有许多区域不但在聆听音乐的时候活动得热烈,想像音乐时也会热烈活动。文章转载自心理学空间,如有侵权,请告知删除,谢谢!

郑州心理咨询中心|心理医生|青少年心理咨询—河南郑州福斯特心理咨询中心 版权所以 未经授权禁止转载、摘编、复制或建立镜像
心理咨询电话0371-63310633、86172899